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Introduction

A prime addition table is a set of all two prime sums.Because we have only known
finite primes now,it seems that there is only incomplete set of all two prime
sums. However,we know that there are infinite primes(Euclid), we also know
that the distribution of primes is asymptotic and follows the Prime Number
Theorem(C.Gauss and A.M.Legendre in 1792;P. Chebyshev in 1849;B.Rosser in
1941;A. Selberg and P. Erdos in 1949;). Then, we can get some properties of the
set of two prime sums, though not all of them. My research shows that these
properties are sufficient to prove that the set of all two prime sums contains all
even numbers greater than 2.

In this paper I study it in three steps.First step (Section 1), we got a strict-
ly ordered sequence of prime numbers,P = {pi; i = 1, 2, 3, ...} .I studied the
meaning of subscript i,which is the ith layer of nature numbers.I introduce the
concept of odd holes to study the internal structure of prime sequence.Second
step (Section 2), we construct a set of all two prime sums by using the arith-
metic addition table of prime sequence. However, this prime addition table can
not intuitively show the situation containing even numbers. I constructed an
equivalent table of prime additions,and the situation containing even numbers
is clearly presented in the table. There are many even number holes not in-
cluded in the equivalent prime addition table. It is easy to see that if an even
number is not included in the addition table (that is, Goldbach’s exceptions), it
is equivalent to the existence of through holes in the equivalent prime addition
table. The condition of forming a through hole is studied, and it is found that it
is a translational symmetry of prime sequence. Third step (Section 3), we study
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the translation symmetry of sequence. The condition for the existence of Gold-
bach’s exceptions is that the prime sequence and its corresponding non-prime
odd sequence have the complementary symmetry of translating these exception-
s. I prove that the PNT negates the existence of this symmetry. This proves
that the prime addition table contains all even numbers greater than 2.

1 The Generation of Primes and the Prime Num-
bers Theorem

The set of natural numbers is N = {i; i = 1, 2, 3, 4, ...}.

Definition 1.0.1 For any nature number m ∈ N ,the m’s coset of N ,Sm ≡
{mi; i = 1, 2, 3, 4, ...}.

Therefore,the coset S1 = N ,which is a set of natural numbers. For m = 2,the
coset S2 = {2, 4, 6, ...},that is the all even numbers. For m = 3,the coset S3 =
{3, 6, 9, ...},it is the set obtained by multiplying each natural number by 3. The
set of all other natural numbers and so on. If a number m can be decomposed
into the product of l and k, m = l×k, then Sm = {ilk; i = 1, 2, 3, 4, ...}, so Sm ⊂
Sk and Sm ⊂ Sl ,are subsets of Sl and Sk. For example, S6 = {6, 12, 18, ...},
because 6 = 2 × 3, S6 ⊂ S2 and S6 ⊂ S3. Obviously, only the cosets of primes
are the true subsets of natural numbers.

1.1 The Generation of Primes

We can use the cosets of primes to form the natural number N . We have the
first coset S2. From 2 → 4, the number 3 is missing in the middle, and it is
impossible to find the number 3 in S2 , so we need to add another coset of
number 3 ,S3. We have S2 and S3 two cosets now. In S2 ∪ S3, from 2 → 3 →
4 → 6, the number 5 is missing, we need to add another coset of number 5,
S5. In S2 ∪ S3 ∪ S5, from 2 → 3 → 4 → 5 → 6 → 8,the number 7 is missing,
we need to add another coset of number 7, S7. In S2 ∪ S3 ∪ S5 ∪ S7,from
2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 10 → 12, the number 11 is missing, we
need to add another coset of number 11, S11. Generally, when we have found
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the natural number 2 → 3 → 4 → 5 → 6 → .... → pn in the
n∪

i=1

Spi ,and then to

find the following natural number pn + 1 → pn + 2 → pn + 3 → ... → pn +m,
until pn + m is not included.It means that such pn + m are not expressed as
the products of another numbers.Therefore,this pn +m is the (n+ 1)th prime,
denoted by pn+1 = pn +m.We need to add a prime coset Spn+1 .

Primes are generated sequentially. Each prime coset is in a row. The s-
mallest prime p1 = 2 is in the first row. The row number n has a one-to-one
correspondence with the prime, that is, p1 = 2, p2 = 3, p3 = 5, p4 = 7, .... Line
n+1 must be the next row of line n, and all the primes form a strictly ordered
set,

P = {pi; i = 1, 2, 3, 4, ...} = {2, 3, 5, 7, 11, 13, 17, ...}. (1)

The union of finite n row prime cosets is
n∪

i=1

Spi .No matter how big n is, if

the all next natural numbers can be found in the union of the coset of finite n
rows prime, then this n is too special, which is unreasonable. Therefore,Nn ≡
{1,

n∪
i=1

Spi} ⊂ N,it can not be constructed as a natural number set. Only n to

infinity can fill natural numbers, that is, primes have infinite rows,

N = lim
n→∞

Nn = {1,
∞∪
i=1

Spi}. (2)

1.2 The Element Density and the Prime Number Theo-
rem

We study the density of elements in the prime coset table(Table 1) to show the
importance of the coset table. The probability of each row element appearing
in Table 1 is same. For example, S2, the density of elements appearing in N is
1
2 , and the density of S3 is 1

3 .and the density of S5 is 1
5 . In general, the density

of Spn is 1
pn

. In the prime coset table(Table 1), the density decreases from top
to bottom by the reciprocal of primes. The number of elements in each column
is non-uniform, and the density before column n is also non-uniform. In Table
1, the primes are the starting elements, and the columns in which the primes
are located have only one element, so the primes are truncated. We can denote
the number before pn (including pn) as Npn .It is easy to get

Npn =
n∑

i=1

[
pn
pi

]. (3)

The total seat before pn (though many of the positions are empty) is Vpn =
pnn. The density of the element before pn is ρn,so

ρn ≡ Npn

Vpn

=
1

pnn

n∑
i=1

[
pn
pi

]. (4)
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When n is larger,

ρn ≈ 1

n

n∑
i=1

1

pi
. (5)

Given the primes Pn, the density for every pn prime can be calculated by
the Formula (5). Draw the density ρ ∼ n curve of 1229 primes within the first
10000, as shown in Figure 1.

Figure 1: The density of number in the coset table of primes

This density ρn is obviously related to n and it is smoothly. With the
following recursive relationship,

ρn =
n− 1

n
ρn−1 +

1

n2(lnn+ ln lnn− 1)
, (6)

The density curve of Figure 1 is well fitted, and the error is about −3.9 ×
10−8% when n = 1229.The formula (5) can be wrote by

ρn ≈ n− 1

n
ρn−1 +

1

npn
. (7)

Comparing Formula (7) with (6),we got

pn ≈ n(lnn+ ln lnn− 1) ≈ n lnn. (8)

This result accords with the Prime Number Theorem[1].Acoording to the
PNT(8),we got following two corollaries.

Corollary 1.2.1 The distribution of prime numbers is non-uniform and the
density decreases gradually.
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Proof 1 There are n primes within pn,and the primes density π(pn) is

π(pn) =
n

pn
. (9)

According to the PNT(8),

π(pn) ∼
1

lnn+ ln lnn− 1
∼ 1

lnn
, (10)

which means that the density is approximately function of n and the distribution
of primes is not uniform.With the increase of n, the density of primes decreases
gradually with 1

lnn .

Corollary 1.2.2 For large n,the distribution function of primes is approximate-
ly smooth without mutation intervals.

Proof 2 For large n ≫ 1,the PNT(8) is approximately continuous,and we can
get the derivative of the prime formula (8)

dpn
dn

≈ lnn+ ln lnn+
1

lnn
;n ≥ 2. (11)

The Figure 2 is the curve of Formula (11).

Figure 2: The Derivative of Prime

We can see that the derivative is greater than zero and increases gradu-
ally.Therefore, there is no inflection point and the size of primes increases
monotonously with n.It means that the distribution function of primes is ap-
proximately smooth without mutation intervals for large n.

1.3 The Structure of Prime Sequence

Therefore,we have obtained a strictly ordered and infinitely long primes se-
quence.In order to study the properties of the primes sequence,we introduced
finitely length primes sequence.

Definition 1.3.1 Pm = {pi; i = 1, 2, 3, ...,m}.
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It is a subset of the primes sequence P .Obviously,there are many non-prime
odd numbers between primes.

Definition 1.3.2 The odd holes of Pm are the non-prime odds between pi−1

and pi,where i ≤ m.The deep of an odd hole is denoted by ki,it is defined below,

ki ≡
1

2
(pi − pi−1)− 1. (12)

It is number of non-prime odds between pi−1 and pi.Therefore,the ki = 0 for
twin primes.In [pi−1, pi],the non-prime odd are

cij = pi−1 + 2j; j = 1, 2, 3, ..., ki, (13)

Ci = {cij ; j = 1, 2, 3, ..., ki}. (14)

There is not cij when ki = 0.And total deep of Pm is denoted by Km,we have

Km ≡
m∑
i=2

ki =
1

2
(pm − 3)− (m− 1). (15)

For example,m = 1229,p1229 = 9973,K1229 = 3757,there are 3757 non-prime
odds from p1 = 2 to p1229 = 9973.For large m,according to the PNT(8),

Km ≈ 1

2
m lnm ≫ m. (16)

That is said that the deep of odd holes is larger than the numbers of primes
in Pm for larger m.

In [3, pm],there are Km non-prime odds and (m − 1) primes.Adding odd
number 1,the Km + 1 non-prime odds sequence less than pm is

OPm
= {1}+ {Ci; i = 1, 2, 3, ...,m}, (17)

= {1, cij ; j = 1, 2, 3, ..., ki; i = 1, 2, 3, ...,m}, (18)

= {ol; l = 0, 1, 2, 3, ...,Km}, (19)

= {1, 9, 15, ..., oKm−1, oKm}. (20)

Where o0 = 1, ol−1 < ol,and ol is the odd number of all cij arranged from small
to large.

2 The Prime Addition Table

In order to obtain the every sum of all two primes, the all prime sequence
are arranged in the first row and the first column of the table, and the prime
addition table 2 is made according to the arithmetic addition rule.
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Table 2 The table of primes addition

The elements in Table 2 are the sum of the corresponding rows and column
primes pi and pj , denoted by

hij = pi + pj ; i, j = 1, 2, 3, 4, .... (21)

It is easy to get

hij = hji. (22)

It is the symmetry of rows and columns.

Definition 2.0.3 The set of the evens in the primes addition table denoted by

H ≡ {h11, hij ; i, j = 2, 3, 4, ...} = {4, hij ; i, j = 2, 3, 4, ...}. (23)

Theorem 2.0.4 H contains the sums of all two primes.

Proof 3 Because the even element hij = pi + pj,pi and pj takes all primes, the
sums of all possible pairwise primes is contained in H.

The Theorem 2.0.1 seems to be simple,but it is very important.It tell us that
the primes addition table constructs a evens set H which includes all possible
sum of two primes.Only need to prove S2 ⊂ H,that is all evens in H,we can
prove the Goldbach’s conjecture.

2.1 The Equivalent Prime Additive Table

Definition 2.1.1 Hole.Given a set S, there is an even E, which satisfies E ∈
S2,but E ̸∈ S and then the E is called even hole of S, which is referred to as
hole.
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Figure 3: The equivalent prime addition table

In order to show the hole properties of the prime addition table, we can
mark the even elements of the prime addition table in the even set.In order to
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make the table convenient, the set of even elements of the mth column in the
prime addition table 2 is denoted by Gpm = {pm+pi; i = 1, 2, 3, .....}, which is a
subset of H. For example, {p1 + pi; i = 1, 2, 3...} = {4, 5, 7, 9, 13, 15, .....}, where
only 4 is even, so Gp1 = {4}. {p2 + pi; i = 1, 2, 3...} = {5, 6, 8, 10, 14, 16, ...},the
set of evens is denoted by Gp2 = {6, 8, 10, 14, 16, ...}. Obviously, every Gpm

does not contain all evens, that is, there are many even holes in Gpm . Put the
set S2 = {2, 4, 6, 8, ...} of all evens in the first column on the left, then arrange
Gpm in the order of primes. The elements whose Gpm intersects S2 in each
column are marked (blackened) at the corresponding position of this row, the
non-intersect elements are empty, and the leftmost column is the prime number
corresponding to the elements in Gp2 . We get the equivalent prime addition
table 3,which is equivalent to the primes addition table 2.

There are many vacancies in each column, which means that the sum of a
prime pm and all other primes pi cannot form all evens. The even holes of Gpm

are shown in the equivalent prime addition table.The following six Lemmas are
the properties of the equivalent prime addition table.

Lemma 2.1.2 There is only one even 4 on the even axis and the other even
numbers are holes in Gp1 .

Proof 4 Only 4 is even in {p1 + pi, i = 1, 2, 3, ...} and every else is odd.So,

Gp1 = {4}. (24)

There is only one number 4 in the even axis and the other even numbers are
holes.

Lemma 2.1.3 Gp2 = {pi + 3; i = 2, 3, 4, ...}. There are holes of Gp2 when
pn − pn−1 ≥ 4.The numbers of holes are kp2

n = 1
2 (pn − pn−1)− 1.

Proof 5 There are no hole between the two even numbers of the difference 2.For
example,there is not hole between even 6 and 8. If the difference between adja-
cent elements is greater than 2, the deep kp2

n of hole in Gp2 is

kp2
n =

(3 + pn)− (3 + pn−1)

2
− 1 =

pn − pn−1

2
− 1 = kn. (25)

Compared with the definition of odd holes in prime sequence(Definition 1.3.2),the
structure of even holes in Gp2 is the same as that of odd holes in primes se-
quence.

Lemma 2.1.4 The structure of each column Gpm in the equivalent addition
table are same as the structure of Gp2 , and the mark position of Gpm are displace
pm − 3 down relative column Gp2

.

Proof 6 For m ≥ 3,

Gpm = {pm + pi; i = 2, 3, 4, ...}, (26)

= {pm + 3, pm + 5, pm + 7, ..., pm + pi, pm + pi+1, ...}. (27)
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If

4 ≤ (pm + pn)− (pm + pn−1) = pn − pn−1, (28)

there are holes,and the hole numbers are

kpm
n =

1

2
((pm + pn+1)− (pm + pn))− 1 = kn. (29)

It means that the structure of holes in Gpm are same as structure of holes
in Gp2 .The first element of Gpm is (pm + 3),and the first element of Gp2 is
6.Therefore,the relative position of Gpm to Gp2 same as displacement down

(pm + 3)− 6 = pm − 3. (30)

My Figure 3 be drew by using Lemma 2.1.4.In Excel table I blackened every
element of Gp2 first.I have done the equivalence prime addition table less than
p1229 = 9973.Because the structure of all Gpm is same,we copy the column of
Gp2 to paste one by one in every first position pm + 3 for the column of Gpm .

Lemma 2.1.5 In [pm+pn−1, pm+pn],the even holes of Gpm are {pm+pn−1+
2, pm + pn−1 + 4, ..., pm + pn−1 + 2kn}.

Proof 7 According to the Lemma 2.1.3 and 2.1.4,in [(pm+pn−1), (pm+pn)],the
numbers of even holes are kn.Therefore the position of the holes are {pm+pn−1+
2, pm + pn−1 + 4, ..., pm + pn−1 + 2kn}.

Definition 2.1.6 Family F (pn,m) ≡ {pn + 3, pn + 5, ..., pn + pm} ={pn+pi; i =
2, 3, 4, ...,m},is a set of element pn + pi of every column Gpi

(i = 2, 3, ...,m) for
given prime pn.

In Figure 3, each family of elements is an oblique column starting with
(pn + 3).F (p2,m) = {6, 8, 10, 14, 16, ..., pm + 3} is the set of the uppermost
elements of each column in Figure 3.F (p30,m) = {116, 118, 120, 124, ..., p30+pm}
is the set of elements for each column corresponding primes p30 in Figure 3.

Lemma 2.1.7 The structure of every family is same.The first element of every
family is in Gp2 .

Proof 8 For any pn and m,{(pn + pi); i = 2, 3, 4, ..,m} are the elements of
family F (pn,m).Because difference of adjacent elements in F (pn,m) is (pn +
pi)− (pn+pi−1) = pi−pi−1,which are irrelevant to pn.So the structure of every
family F (pn,m) marked as pn is same each other.The first element of every
family is (pn + 3),it is in Gp2 .

Lemma 2.1.8 The height of the family F (pn,m) is pm − 3.

Proof 9 For any F (pn,m),the maximum element is (pn+pm) and the minimum
element is (pn + 3) .The height of this family is (pn + pm)− (pn + 3) = pm − 3.
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2.2 The Through Hole and Its Conditions

Definition 2.2.1 The through hole.The even E is through hole of
m∪
i=1

Gpi if

E ̸∈
m∪
i=1

Gpi
.

For example,E=12 is through hole of
2∪

i=1

Gpi .E=98 is through hole of
7∪

i=1

Gpi .

Theorem 2.2.2 The through holes in the equivalent prime addition table are
in the same row.

Proof 10 The even hole E for
m∪
i=1

Gpi means that the E is hole for every set

Gpi,1≤ i ≤ m,so the through hole E in same row in the equivalent prime addition
table.

Theorem 2.2.3 The prime addition table contains all even numbers, which is
equivalent to the absence of through holes in the addition table.

Proof 11 According to the Definition(2.0.3)

H = lim
m→∞

m∪
i=1

Gpi =
∞∪
i=1

Gpi , (31)

which is the set of all even numbers of the prime addition table.Accoding the
through hole definition (Definition (2.2.1)),the existence of an even number that
does not include in the prime addition table H means that there is a through
hole. Conversely, the absence of through holes means that the prime addition
table contains all even numbers.

Let’s see the Figure 3,there is no through hole pass through the triangular
region in Figure 3,but there are many through holes in unions of finitem column,
m∪
i=1

Gpi .For example,E=98 is through hole of
7∪

i=1

Gpi .

Theorem 2.2.4 The through hole of triangle region is the through hole of the
equivalent prime addition table.

Proof 12 There is two regions in
m∪
i=1

Gpi .One is the triangle region which

position ≤ (pm + 3).Another one is the below triangle region which position
> (pm + 3).If there are through holes, there are only two possibilities. One is
in the triangle region, the other is below the triangle region. First, we study the
area below the triangle.

For finite m,there are many through holes in
m∪
i=1

Gpi ,whose height of triangle

region is (pm + 3).According to the PNT,there will always be adjacent primes
whose difference is greater than the height of the triangle region,i.e,
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pNm+1 − pNm > pm − 3. (32)

So we have

(pNm+1 + 3)− (pNm + pm) > 0. (33)

It means that the adjacent families F (pNm ,m) and F (pNm+1,m) are not over-

lap.The even between (pNm
+pm) and (pNm+1+3) are through holes of

m∪
i=1

Gpi
.For

example,E=122,124,126,128 are four through holes of
4∪

i=1

Gpi in Figure 3.Clear-

ly, such through holes are below the triangle region.
If an even number E is a hole of every adjacent K families intersecting with

it, then the E is also a through hole.For example,E=98 is a through holes of

families F (p24, 7) and F (p23, 7) in
7∪

i=1

Gpi .Clearly, such through holes are below

the triangle region.
When m increases, the above two types of through holes are not necessarily

through holes.Only through holes in the triangle region, no matter how big m is,
are all through holes. Therefore, the through hole of the triangle region is the
through hole of the equivalent prime addition table.Therefore, only the through
holes across the triangle region.

We verify first through hole when m ≤ 39.We can directly look the position
of the through hole in the equivalent prime addition table.The position E of

first through hole for every
m∪
i=1

Gpi within 10000 shows in Table 3.N is the N th

prime of the equivalent prime addition table correspondence with E.

Table 3 The position of the first through hole of the m columns set
m E N m E N m E N
1 6 2 14 556 101 27 5372 708
2 12 4 15 992 166 28 5372 708
3 30 9 16 992 166 29 5372 708
4 98 24 17 992 166 30 5372 708
5 98 24 18 992 166 31 5372 708
6 98 24 19 992 166 32 5372 708
7 98 24 20 992 166 33 5372 708
8 220 47 21 2642 382 34 7426 941
9 308 62 22 2642 382 35 7426 941
10 308 62 23 2642 382 36 7426 941
11 556 101 24 2642 382 37 7426 941
12 556 101 25 2642 382 38 7426 941
13 556 101 26 2642 382 39 7426 941

For example, m = 7.It means that the depth of the hole is 7 columns, but the
hole position is E7 = 98, the correspondence column number in the equivalent
prime addition table is 24,and these columns that can be used to block the hole

are N7 = 24 > 7.E = 98 is the through hole for
4∪

i=1

Gpi ,
5∪

i=1

Gpi ,
6∪

i=1

Gpi ,
7∪

i=1

Gpi .

In 2013,Tomas et al have verified Goldbach’s conjecture hold within 4×1018

[2].Corresponding m ≈ 1.0 × 1017.Therefore,there is not through hole in the
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triangle in
m∪
i=1

Gpi for m ≤ 1.0×1017.Therefore, the position of the first through

hole is greater than 4× 1018.
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Figure 4: The through hole in triangle

Theorem 2.2.5 The forming condition of through hole is that the negative
prime sequence and its corresponding non-prime odd sequence have complemen-
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tary symmetry of translation E.

Proof 13 According to the Theorem (2.2.2),The forming condition of through
holes is that all prime families intersecting the through holes have a common
hole.Without losing generality,assume that there is not through hole before (pm+
3),and there is one through hole E in [pm+3, pm+1+3] in the triangle region,so
(3 + pm) < E < (3 + pm+1) (See Figure 4).

Therefore the E is the even hole for every one of the (m − 1) families,and
the (m− 1) families must be satisfied following equations,

E = 3+pm+l1 = 3+pm−1+l2 = 3+pm−2+l3 = ... = 3+p3+lm−2 = 3+p2+lm−1,
(34)

where li is distance between even holes from (pi + 3) to (pi + bi) in family
F (pi,m).It satisfied that

li = (pi + bi)− (pi + 3) = bi − 3. (35)

where bi is non-prime odds,bi ∈ OPm in family F (pm−i,m).According to the
Formula (19),the bi is some of the ol.So,the Formula(34) becomes

E = pm + b1 = pm−1 + b2 = pm−2 + b3 = ... = p3 + bm−2 = p2 + bm−1. (36)

It can be written as 
b1 = (−pm) + E
b2 = (−pm−1) + E
...
bm−2 = (−p3) + E
bm−1 = (−p2) + E

(37)

It means that the negative primes sequence {−pm,−pm−1, ...,−p3,−p2} and
the non-prime odds sequence {b1, b2, ..., bm−2, bm−1} are symmetry of translation
E.We will study translation symmetries of number sequences next section.

3 The Symmetry of Prime Sequence

There is its internal structure for any number sequence.Therefore there are some
symmetries for any number sequence.Many laws can be obtained by studying
the symmetries of these number sequence.The translation symmetry contains
the law of the sum of two numbers.The prime sequence is a special one, and
its translation asymmetry implies Goldbach’s conjecture. In order to study the
symmetry of prime sequence, we study first the symmetry of natural sequence,
even number sequence and odd number sequence.
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3.1 Symmetry of Natural Sequence

Natural number sequence is N = {i; i = 0, 1, 2, 3, ...}. N can be expressed
intuitively in the one-dimensional X-axis, that is, all integer points on the X-
axis from 0 every one.

Definition 3.1.1 Inversion of number sequence,σ.Let S = {si; i = 1, 2, 3, ...},then
σS = {−si; i = ..., 3, 2, 1},which is inversion of number sequence S with 0 as the
origin.The arrangement of number sequence is from small to large.

The negative nature number sequence of N is N− = σN = {−i; i =
0, 1, 2, 3, ...} = {...,−3,−2,−1, 0} . The union of N and N− is an integer
sequence,Z = {N,N−} = {−i, i; i = 0, 1, 2, 3, ...}. The density of Z is con-
stant to 1, that is, the integers are uniformly distributed.

Definition 3.1.2 Translation of number sequence,Tm.Given a number sequence
S = {si; i = 0, 1, 2, 3, ...} and nature number m.Translation m of sequence S
means that each number si plus m,denoted by Tm.So,

S′ = TmS = {si +m; i = 0, 1, 2, 3, ...}. (38)

�

Figure 5: The translation of nature number sequence

For example, if the integer sequence Z translates the integer m, another
sequence Z ′ is obtained.See Figure 5.

Z
′

= TmZ = {−i+m, i+m; i = 0, 1, 2, 3, ...}, (39)

= {...,−3 +m,−2 +m,−1 +m,m, 1 +m, 2 +m, 3 +m, ...}. (40)

Definition 3.1.3 Translation symmetry. Suppose S′ is a sequence of S after
translation m.If sequence S and S′ are the same structure,same distribution
and indistinguishability. We call that S has symmetry with translation nature
number m.

Theorem 3.1.4 Any natural number m can be expressed as the sum or differ-
ence of two natural numbers.
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Proof 14 Given integer sequence Z,Z ′ = TmZ. The Z and Z ′ intersect an
every point and are indistinguishable.So,Z is symmetrical with translation m.
Discuss in three zones I, II and III(See Figure 5).

(1) Zone I. The Z ′ sequence is that the {0, 1, 2, 3, ...,m} in X-axis positive
direction.The Z sequence is {−m, ...,−3,−2,−1, 0} in X-axis negative direction.
let z′ ∈ Z ′,z ∈ Z,we have 0 < z′ < m,−m < z < 0,

z′ = z +m. (41)

Let n1 and n2 are natural numbers corresponding to integer sequence Z and
Z ′.So z′ = n1 and z = −n2, i.e.

m = z′ − z = n1 + n2. (42)

It means that every nature number m can be expressed as the sum of two natural
numbers n1 and n2.

Here, the intersection point are at x = 0, 1, 2, ...,m, which is expressed as
the sum of two natural numbers in (m+ 1) ways, namely

m = 0 +m = 1 + (m− 1) = 2 + (m− 2) = ... = m+ 0. (43)

(2) Zone II. z′ > m,z > 0, z′ = z+m. Because z′ = n1 and z = n2, that is,
m = n1−n2, the nature number m can be expressed as the difference between two
natural numbers n1 and n2.For a fixed m,there is infinite intersection points,and
then there is infinite combinations.

(3) Zone III.z′ ≤ 0,z ≤ −m, z′ = z +m. Because z′ = −n1 and z = −n2,
that is, m = n2 − n1, the nature number m can be expressed as the difference
between two natural numbers n2 and n1.For a fixed m, there is infinite combi-
nations.

Above three cases are combined,that is, any natural number m can be ex-
pressed as the sum or difference of two natural numbers.

In particular, it is pointed out that in region I, the positive Zm and negative
Z−
m coincide exactly with each other. As a result,every nature number m can be

expressed as the sum of two natural numbers.

3.2 Symmetry of Even and Odd Sequences

The even number sequence E+ = {0, 2, 4, 8, ...} is all integer points on the X-axis
starting from 0 every two. We got the even negative sequence,E− = σE+ =
{...,−8,−6,−4,−2, 0}. The union of E+ and E− is Ë = {E+, E−},a full even
sequence. The full even number sequence density is 1

2 , uniformly distributed.
The odd number sequence O+ = {1, 3, 5, 7, 9, ...} is all the integer points on

the X-axis starting from 1 every two.The odd negative sequence,O− = σO+ =
{...,−9,−7,−5,−3,−1}. The union of O+ and O− is Ö = {O+, O−},a full odd
sequence. The full odd number sequence density is 1

2 , uniformly distributed.
Obviously, a proof identical to Theorem 3.1.4,the full even number sequence

Ë and the full odd number sequence Ö have translating symmetry even number
respectively, so there are three lemmas as follows:
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Lemma 3.2.1 Even number sequence Ë are symmetry with translating any
even number E, then any even number E can be expressed as the sum or d-
ifference of two even numbers e1 and e2.That is:(i) in zone I,E = e1 + e2;(ii)
in zone II and III, E = e1 − e2, (e1 > e2) or E = e2 − e1, (e2 > e1).

Lemma 3.2.2 Odd number sequence Ö are symmetry with translates any even
number E, so any even number E can be expressed as the sum or difference of
two odd numbers o1 and o2.That is:(i) in zone I,E = o1+o2; (ii) in zone II and
III, E = o1 − o2, (o1 > o2) or E = o2 − o1, (o2 > o1).

Definition 3.2.3 Translation complementary symmetry. Given two non-intersection
sequence S1 and S2,i.e,S1

∩
S2 = ∅. If S1 is completely coincident with S2 after

translating m, the sequence S1 and S2 have the complementary symmetry of
translating m.

Lemma 3.2.4 The even sequence Ë and odd sequence Ö has complementary
symmetry with the translation every odd number O. Then any odd number O
can be expressed as the sum or difference between an even number e and an odd
number o.That is:(i) in zone I,O = o+e; (ii) in zone II and III, O = e−o, (e > 0)
or O = 0− e, (o > e).

Here, O is expressed as the sum of even and odd numbers in O+1
2 ways,

namely

O = 0 +O = 2 + (O − 2) = 4 + (O − 4) = ... = (O − 1) + 1. (44)

3.3 Symmetry of Prime Sequences

In the first section, we obtain a prime sequence P = {pi; i = 1, 2, 3, ...} whose
distribution satisfies the Prime Number Theorem.A piece of prime sequence
denoted by Pm = {pi; i = 1, 2, 3, ...,m}. Since P1 = {2} is even, the sum or
difference between it and any other primes is odd number.When discuss transla-
tional even number, we delete P1 and get the prime sequence P o = P − {p1} =
{pi; i = 2, 3, 4, ...} = {3, 5, 7, 11, ...} ,which is all odd prime sequence.Without
causing confusion,we omit the superscript o of P o and mark it as P .

According to the Definition 1.3.2,there are kn = 1
2 (pn−pn−1)−1 non-prime

odds holes between pn and pn−1.The negative sequence P− = σP+ = {−pi; i =
2, 3, 4, 5, ...} = {...,−11,−7,−5,−3} is obtained. The union set of P+ and P− is
the full odd prime sequence P = {P+, P−}. In this way, the density distribution
of P in both positive and negative directions of the X-axis are same and satisfies
the Prime Number Theorem ,which is not uniform.

Definition 3.3.1 The odd complement set OP of the odd prime sequence P is
OP = O − P .That is the all odd numbers except the odd prime sequence,

OP = {...,−25,−21,−15,−9,−1, 1, 9, 15, 21, 25, ...}. (45)
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Lemma 3.3.2 The odd prime sequence P translates any odd number O into
even number sequence Ë. That is, any odd number O can be expressed as the
sum or difference of odd prime pn and even number e.That is:(i) in zone I,O =
pn + e;(ii) in zone II and III, O = pn − e, (pn > e) or O = e− pn, (e > pn).

The proof of above Lemma identical to the Theorem 3.1.3.

Lemma 3.3.3 The odd prime sequence P is asymmetry of translation even E.

Proof 15 According to the Prime Number Theorem, the distribution of P is
not uniform.By translating even number E,

P ′ = TEP = {pi + E; i = 2, 3, 4, ...}. (46)

The P ′ does not coincide with P at every prime, so the prime sequence is
not symmetric with translation even number E.

In zone I,a prime sequence is Pm = {pi, i = 2, 3, 4, ...,m;Pm < E}.The
reversion of Pm is

P−
m = {−pi, i = 2, 3, 4, ...,m;Pm < E} = {−pm, ...,−5,−3}. (47)
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Figure 6: The translation of prime sequence

Obviously,after translating even number E,Pm and P−
m are not intersection

at every prime,but they may be intersection at some point.

Theorem 3.3.4 If the Pm and TEP
−
m are intersection at some primes(at least

one prime),the even number E can be expressed as the sum of pairs of these
primes,at least one pair of primes.

Proof 16 If the Pm and TEP
−
m are intersection at some primes(at least one

prime),we can find some prime pi ∈ Pm and −pj ∈ P−
m ,which satisfy pi =

(−pj) + E.Therefore,E = pi + pj.

Theorem 3.3.5 If the Pm and TEP
−
m are not intersection at every prime,this

even number E can not be expressed as the sum of prime pair.Such even number
E can be expressed as the sum of every prime less than E and their non-prime
odd.
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Proof 17 That is to say, after translating even number E,there is not intersec-
tion prime of odd prime sequence Pm = {3, 5, ..., pm} and P−

m = {−pm, ...,−5,−3}.
Therefore,P−

m fall into its odd complement set OPm
,

oi = (−pi) + E. (48)

This shows that these even numbers E are the sum of prime pi ∈ Pm

and non-prime odd numbers oi ∈ OPm .That is,E = pi + oi. Obviously,i =
1, 2, 3, ...,m.So,the even number E cannot be expressed as the sum of two prime
numbers. Such an even number E is the Goldbach’s exception number.

If There are many such Goldbach’s exception numbers,which denoted by
Em,m = 1, 2, 3, .....The finite m means that there are finite number of Gold-
bach’s exception number.The infinite m means that there are infinite number
of Goldbach’s exception number.Through actual verification, until 4× 1018 [2],
no Goldbach’s exception number has been found, so E1 > 4× 1018.

Theorem 3.3.6 The m is finite.Namely,the number of Goldbach’s exceptions
is finite.

Proof 18 Suppose there are Em, m = 1,2,3,... .The m can be infinite.For every
Em, we have an odd prime sequence,

Pnm = {3, 5, ..., pnm}, (49)

where nm satisfies
pnm < Em, (50)

pnm is the first prime less than Em.Therefore,we can get correspondence negative
sequence P−

nm
,

P−
nm

= {−pnm ,−pnm−1, ...,−5,−3}. (51)

Corresponding the sequence Pnm
,we have its odd complement set,

OPnm
= O − Pnm (52)

= {oi; i = 0, 1, 2, ...,Knm} (53)

= {1, 9, 15, ..., oKnm−1, oKnm
}, (54)

where

Knm
=

1

2
(pnm

− 3)− (nm − 1). (55)

In zone I, If Em is through hole,after translating Em, the sequence P−
nm

falls in the OPnm
. The (nm − 1) odd primes fall in (nm − 1) positions of Knm

elements of OPnm
. The most possible filling methods of Knm elements of OPnm

are Knm !,which is finite.
For example, suppose that E1 ∼ 4 × 1018, according to the Prime Number

Theorem,
pn1 ≈ n1(lnn1 + ln lnn1 − 1) ≈ 4× 1018, (56)

19



we got
n1 ≈ 9.6× 1016. (57)

There is a prime number sequence

P9.6×1016 = {3, 5, ..., p9.6×1016}, (58)

P−
9.6×1016 = {−p9.6×1016 , ...,−5,−3}. (59)

Which means that Pn1 have (n1−1) elements.Therefore,there is correspondence
odd sequence

OP9.6×1016
= {1, 9, 15, ..., oK9.6×1016−1

, oK9.6×1016
}, (60)

where
K9.6×1016 ≈ 1.9× 1018. (61)

The prime numbers only account for non-prime odd numbers

n1

Kn1

≈ 5%. (62)

By translating even E1 of the prime sequence P−
n1

,the (9.6×1016−1) prime
numbers of P−

n1
will fall into this Kn1

≈ 1.9 × 1018 non-prime negative odd
number position of OPn1

,but it must be one of the Kn1 ! kinds. See Figure 6 (a).
For E2, there exists a primes sequence

Pn2 = {3, 5, ..., pn1 , pn1+1, ..., pn2}, (63)

P−
n2

= {−pn2 , ...,−pl(n1,n2),−pl(n1,n2)−1, ...,−5,−3}. (64)

where l(n1, n2) satisfies

pn2 − pl(n1,n2) ≈ pn1 − 3, (65)

means the length of prime sequence {pl(n1,n2), ..., pn2} is approximately equal
to the length of prime sequence {3, 5, ..., pn1}.There is correspondence non-prime
odd numbers set of OPn2

,

OPn2
= {1, 9, 15, ..., oKn2

}, (66)

= OPn1
+ {oKn1+1, ..., oKn2

}. (67)

The prime number sequence {−pn2 , ...,−pl(n1,n2)} should also be filled in
OPn1

.The filling method is not necessarily same with the method in E1, but it
must be one of their Kn1 ! kinds. See Figure 6 (b).

By analogy, for Em, there is a prime sequence

Pnm = {3, 5, ..., pn1 , pn1+1, ..., pnm}, (68)

P−
nm

= {−pnm , ...,−pl(n1,nm),−pl(n1,nm)−1, ...,−5,−3}, (69)
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where l(n1, nm) satisfies

pnm
− pl(n1,nm) ≈ pn1

− 3. (70)

Therefore there is a non-prime odd numbers sequence

OPnm
= {1, 9, 15, ..., oKnm

}, (71)

= OPn1
+ {oKn1+1, ..., oKnm

}. (72)

Translation Em of P−
nm

,P−
nm

falls into the set of non-prime odd number-
s OPnm

.It is important to point that this prime P−
nm

must also be filled in
OPn1

.The filling method is not necessarily the same pn1 , but it must be one of
their Kn1 ! kinds. See Figure 6 (c).
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Figure 7: The intersection of prime sequence

If m is enough large,there are many m which satisfies

m > Kn1 !. (73)

It means that there are always some kind of filling that would repeat, indicat-
ing that the distribution of the corresponding segment primes {−pnm , ...,−pl(n1,nm)}
would repeat.

If m are infinite, some kind of prime distribution recur infinitely. This
contradicts the PNT.

Notice that the first Goldbach’s exception E1 for our discussion above may
be any Ei,(1 < i ≤ m). It means that every following prime sequence Pnm must
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fill into before every non-prime odd sequence,OPn1
,OPn2

,...,OPnm−1
.Therefore,

not only for segment primes {−pn2 , ...,−pl(n1,n2)}, but also for segment primes
{−pnm , ...,−pl(n1,nm)}. This means that any distribution of a prime number can
be repeated infinitely, which violates the Prime Number Theorem. Therefore, m
is finite and the number of Goldbach’s exceptions is finite.

From Theorem 3.3.6, the number of Goldbach exceptions is finite, denoted
by M , and the corresponding even number is denoted by EM . So there are the
following corollaries:

Corollary 3.3.7 Any even number E satisfying 2 < E < E1 and E > EM , can
be expressed as the sum of two primes.

Therefore,there is a special interval (E1, EM ).I prove now that there is not
such interval (E1, EM ) according to the PNT.

Theorem 3.3.8 There is not such interval (E1, EM ).

Proof 19 The existence of through holes in each interval must be due to the spe-
cial distribution of primes in this interval.If only one even interval has through
holes, then the distribution of primes in the interval (E1, EM ) is different to
the distribution of all prime sequence.Therefore, the existence of special inter-
val (E1, EM ) is inconsistent with the approximate continuity of prime distribu-
tion(Corollary 1.2.2).

Further, because primes are infinite, no matter how big M is,

lim
n→∞

EM − E1

pn
→ 0, (74)

the interval (E1, EM ) is very small interval,and just like a singular point in start-
ing point for large n.It is contradict with the distribution theorem PNT(Corollary
1.2.2).Therefore,there is not such interval (E1, EM ).

According to above Theorem,we have following theorem.

Theorem 3.3.9 The prime addition table contains all even numbers greater
than 2.

Proof 20 According to the Theorem 3.3.6 and 3.3.8,the PNT negates the ex-
istence of Goldbach’s exception E.According to the Theorem 2.2.5,there is not
even number E means that the P−

m and OPm are asymmetrical.So the Equation
(36) is not valid.Therefore there is not even through hole E in the triangle of
m∪
i=1

Gpi .According to Theorem 2.2.3,there is not even through hole in the triangle

region means that there is not even through hole in the equivalent prime addition
table.It is that the prime addition table contains all even numbers greater than
2.
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